suggest that the mean amplitude of the thermal vibration of atoms has the largest component along the c axis and the smallest component along the a axis, since the overall temperature factor is least for the (001) projection $(1 \cdot 1 \text{ Å}^2)$ and maximum for the (100) projection ($3\cdot 2$ Å²). This is also indicated by the (010) electron-density projection (Fig. 2) where the atomic contours, especially those of the methyl carbon atom, appear distinctly elongated nearly along the c axis. This can be understood from the orientation of the molecule (x, y, z) with respect to the neighbouring molecules in Fig. 4. The atom O_1 is strongly bonded to the two sodium atoms (x, y, z) and (x, y, z+1), and atom O_3 is strongly bonded to the two sodium atoms (x, y+1, z) and (x, y+1, z+1). The methyl carbon C₃ and keto-group oxygen O_2 are bonded to the neighbouring molecules by weak forces only. The oscillation of the molecule about the line O_1-O_3 should therefore be most likely, and so the components of the thermal vibration amplitudes of the atoms C_2 , C_3 and O_2 will be maximum along the *c* axis and will be least along the *a* axis. The bond between Na(x, y, z) and $O_2(x, y, z)$ is quite strong (distance -2.51 Å), but since the movement of the atom O_2 would take place nearly perpendicular to the Na- O_2 bond, the Na- O_2 distance is not expected to alter appreciably during the oscillation. Besides, there is a possibility of free rotation about the central C-C bond, so that the plane $C_3-C_2-O_2$ may keep turning suitably during the oscillation so that the Na- O_2 distance is not affected.

References

AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.

LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures, pp. 288, 309. London: Bell.

MCWEENY, R. (1951). Acta Cryst. 4, 513.

WILSON, A. J. C. (1942). Nature, Lond. 150, 152.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1961). 14, 1286

A note on the crystal structure of zirconium pyrophosphate. By H. McD. McGEACHIN, Albright and Wilson (Mfg) Ltd., Oldbury, Birmingham, England

(Received 26 June 1961)

Levi & Peyronel's (1935) structure of zirconium pyrophosphate ZrP_2O_7 requires that the central P-O-P group of the pyrophosphate ion be linear, lying in fact on a three-fold axis. In both paper and abstract there occurs an unfortunate numerical error by which the P-P distance is incorrectly given as 3.03 Å which is less than twice 1.56 Å, the P-O distance. This has led some writers (Hanwick & Hoffmann, 1951; Van Wazer, 1958) to the conclusion that the P-O-P angle is 152° and not 180°. Furthermore it has been felt that since the X-ray scattering is dominated by the zirconium atoms, the determination of the structure of the pyrophosphate ion may not be unequivocal.

The low temperature form of ZrP_2O_7 crystallizes in a primitive cubic cell of side $a_0 = 8.258$ Å (Harrison, McKinstry & Hummel, 1954). Levi & Peyronel give the density as about 3.3 g.cm.⁻³, which corresponds to four formula units per cell. In any such cell at least some of the eight phosphorus atoms must lie on three-fold axes. If $P_2O_7^{4-}$ is a discrete ion and one phosphorus atom lies on a three-fold axis, so must the other, for otherwise the ion would contain four phosphorus atoms; the only sensible way of distributing the seven oxygen atoms is to place one on the axis and six in two symmetrical groups of three. To preserve four-fold grouping of oxygen atoms round the phosphorus atoms the only possible configuration is one in which the single oxygen atom is placed on the three-fold axis between the phosphorus atoms.

The existence and linearity of the central P-O-P group in ZrP_2O_7 can thus be confirmed (without detailed knowledge of the structure or even the space group) from considerations of the Bravais lattice, cell size and density, and the assumption that the P_2O_7 ion is discrete. It should be noted, however, that in Na₄P₂O₇.10H₂O the P-O-P angle is 134° (MacArthur & Beevers, 1957).

References

- HANWICK, T. J. & HOFFMANN, P. O. (1951). J. Chem. Phys. 19, 708.
- HARRISON, D. E., MCKINSTRY, H. A. & HUMMEL, F. A. (1954). J. Amer. Ceramic Soc. 37, 277.
- LEVI, G. R. & PEYRONEL, G. (1935). Zeit. Krist. 92, 190.
- MACARTHUR, D. M. & BEEVERS, C. A. (1957). Acta Cryst. 10, 428.
- VAN WAZER, J. R. (1958). Phosphorus and its compounds, vol. 1, p. 617. New York: Interscience Publishers.